Table 2. Selected geometric parameters (Å)

	•	-	
C1-C2	1.345 (3)	C8—C9	1.374 (3)
C1013	1.350 (3)	C9013	1.372 (2)
C2—C3	1.464 (3)	C1'—C2'	1.405 (3)
C2-C1'	1.486(3)	C1'—C6'	1.387 (3)
C3-C4	1.446(3)	C2'—C3'	1.380(3)
C3017	1.247 (3)	C3'—C4'	1.405 (3)
C4C5	1.415 (3)	C3'-019	1.370 (3)
C4—C9	1.401 (3)	C4'—C5'	1.373 (3)
C5-C6	1.381 (3)	C4′018	1.366 (2)
C5-016	1.349 (3)	C5'—C6'	1.390 (3)
C6—C7	1.404 (3)	C10-015	1.422 (4)
C6-015	1.377 (2)	C11—O19	1.429 (3)
C7—C8	1.384 (3)	C12018	1.417 (3)
C7—O14	1.347 (2)		

Table 3. Hydrogen-bonding geometry (Å, °)

DH····A	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	$D - H \cdot \cdot \cdot A$
C2'—H2'···O17	0.94 (2)	2.32 (2)	2.880(2)	118 (2)
C10—H10A···O16	0.95 (4)	2.64 (4)	3.159 (3)	115 (3)
014—H14· · · O15	0.86 (4)	2.28 (4)	2.725 (2)	113 (3)
O16—H16· · ·O17	1.00 (3)	1.64 (3)	2.562 (2)	150 (3)
C8—H8· · · O14 ⁱ	0.88 (3)	2.68 (3)	3.346 (3)	133 (2)
C5'—H5'···O16 ⁱⁱ	0.94 (2)	2.73 (2)	3.655 (3)	170 (2)
C12—H12B· · · O15 ⁱⁱ	0.97 (2)	2.77 (3)	3.373 (3)	121 (2)
C11—H11B· · · O15 ⁱⁱⁱ	1.03 (3)	2.75 (3)	3.636(3)	145 (2)
O16—H16· · ·O16 ⁱⁱⁱ	1.00 (3)	2.64 (3)	3.135 (2)	110(2)
C11—H11C···O14 ^{iv}	1.00 (3)	2.72 (3)	3.621 (4)	150(2)
014—H14· · · O18 ^v	0.86 (4)	2.46 (4)	3.022 (2)	123 (3)
O14—H14· · ·O19 ^v	0.86 (4)	2.13 (3)	2.871 (2)	145 (2)
Symmetry codes: (i)	1 - x, -y,	-z; (ii) 2 -	$-x, \frac{1}{2} + y, \frac{1}{2}$	– z; (iii)
$2 - x, 1 - y, -z;$ (iv) $2 - x, -y, -z;$ (v) $x - 1, -\frac{1}{2} - y, z - \frac{1}{2}.$				

The structure was solved by direct methods using *SHELXS*86 (Sheldrick, 1985). The initial R factor for the model proposed was 0.19. After a few cycles of full-matrix least-squares refinement, the R factor reduced to 0.11. All H atoms were located from the difference Fourier map and were refined isotropically.

Data collection: Enraf-Nonius CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: SDP (Frenz, 1978). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP (Johnson, 1965). Software used to prepare material for publication: PARST (Nardelli, 1983).

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: DE1027). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Breton, M., Precigoux, G., Courseille, Ch. & Hospital, M. (1975). Acta Cryst. B31, 921-923.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1359. Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP – a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64–71. Delft University Press.

Harborne, J. B., Mabry, T. J. & Mabry, H. (1975). In *The Flavanoids*. London: Chapman & Hall.

© 1996 International Union of Crystallography Printed in Great Britain – all rights reserved Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.

Kaneda, M., Iitaka, Y. & Shibata, S. (1973). Acta Cryst. B29, 2827– 2832.

Nardelli, M. (1983). Comput. Chem. 7, 95-96.

Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Shoja, M. (1992). Acta Cryst. C48, 2033-2035.

Acta Cryst. (1996). C52, 2875-2878

Acetoxymethyl 4-Chloro-*N*-furfuryl-5sulfamoylanthranilate, an Absorption Furosemide Prodrug

Oscar A. González,^a Alvaro W. Mombrú,^a Leopoldo P. Suescun,^a Raúl A. Mariezcurrena,^a Eduardo Manta^b and Carolina Prandi^b

^aLaboratorio de Cristalografía, Facultad de Química, Universidad de la República, Montevideo, Uruguay, and ^bCátedra de Química Farmacéutica, Facultad de Química, Universidad de la República, Montevideo, Uruguay. E-mail: raul@bilbo.edu.uy

(Received 21 April 1995; accepted 24 June 1996)

Abstract

The title compound, $C_{15}H_{15}ClN_2O_7S$, which was synthesized and characterized as the acetoxymethyl ester of 4-chloro-*N*-furfuryl-5-sulfamoylanthranilic acid (furosemide) is an absorption furosemide prodrug. The molecule crystallized in a triclinic unit cell, space group *P*1. The crystal structure is stabilized by one intramolecular and two intermolecular hydrogen bonds.

Comment

Furosemide is a strong diuretic agent widely used in hypertensive crisis. The use of some acyloxymethyl esters of furosemide as prodrugs to improve the therapeutic success of this drug has been studied by Prandi, Fagiolino, Manta & Llera (1992).

Acta Crystallographica Section C ISSN 0108-2701 © 1996

The structure described in this paper is the acetoxymethyl prodrug, Prol, which has been synthesized and spectroscopically characterized (Prandi, Fagiolino, Manta, Llera, Aiache & Couquelet, 1992). This work is part of a project involving research on the structures of furosemide prodrugs.

The Pro1 molecule contains a six-membered aromatic ring (atoms C1-C6) with which atoms N1, H1, C7 and Ol are coplanar (C7 and Ol are part of the carboxylic group esterified with the acetoxymethyl group). The equation of the plane is 3.739(40)x + 7.300(8)y +9.979(14)z = 3.756(21) and the maximum deviation is -0.082 (10) Å for O1. There is an intramolecular hydrogen bond between N1 and O1 as shown by the N1...O1 [2.713(5) Å] and $H1 \cdots O1[1.95(5) \text{ Å}]$ distances. This hydrogen bond and the high π - π overlap possibilities between the aromatic ring and the carboxylic group may explain the planarity of this part of the molecule. The interatomic distances and conformation are very similar to those of furosemide (Lamotte, Campsteyn, Dupont & Vermeire, 1978) except for the torsion angles linking the six-membered aromatic and furan rings. Relevant torsion angles are listed in Table 3; these demonstrate that furosemide and its prodrug have considerable conformational flexibility about the N1-C11 and C11-C12 bonds. The bond distances between the benzene ring C atoms in Pro1 suggest a decrease in its aromatic character. As in the crystal structure of furosemide, this decrease may be attributed to the presence of the sulfamoyl group.

Fig. 1. ZORTEP (Zsolnai & Pritzkow, 1995) drawing of Pro1. The intramolecular hydrogen bond is marked as a dashed line. Displacement ellipsoids are drawn at the 50% probability level and H atoms as spheres of arbitrary radii.

The presence of the acetoxymethyl group has the main effect on the packing of Prol compared to that of furosemide. This could be explained by the absence of the acidic H atom of furosemide and by the presence of the acetate carbonyl-O atom, O4. There are intermolecular hydrogen bonds between both H atoms at N2 and both ester carbonyl-O atoms, O1 and O4. Therefore, O1 is involved in one intermolecular and one intramolecular hydrogen bond. Pro1 packs as a dimeric unit about an inversion centre with the dimers stabilized by two symmetry-equivalent hydrogen bonds between N2 of one molecule and O1 of the other. These dimers are linked in infinite chains by intermolecular hydrogen bonds between N2 and O4. The molecular geometry of these hydrogen bonds is described in Table 4 and the packing is illustrated in Fig. 2.

Fig. 2. ZORTEP drawing of the chain of Prol molecules showing the hydrogen-bonding scheme and unit cell. Most H atoms are omitted for clarity. Ellipsoids are drawn at the 30% probability level.

Experimental

Pro1 was obtained as previously described (Prandi, Fagiolino, Manta, Llera, Aiache, & Couquelet, 1992) and crystallization was performed by vapour diffusion (ethyl acetate/hexane) at room temperature.

Crystal data

C15H15ClN2O7S Mo $K\alpha$ radiation $M_r = 402.80$ $\lambda = 0.71073 \text{ Å}$ Triclinic Cell parameters from 40 $P\overline{1}$ reflections a = 8.502 (2) Å $\theta = 7.5 - 15^{\circ}$ b = 9.653(3) Å $\mu = 0.385 \text{ mm}^{-1}$ c = 11.767(2) Å T = 293 (2) K $\alpha = 72.01^{\circ}$ Prismatic $\beta = 74.57^{\circ}$ $0.17~\times~0.14~\times~0.08~mm$ $\gamma = 72.74^{\circ}$ Colourless $V = 860.8 (4) \text{ Å}^3$ Z = 2 $D_x = 1.554 \text{ Mg m}^{-3}$ D_m not measured

Data collection		$C_{6-C_{1-C_{7}}}$	1195(4)	$C^{2}-C^{1}-C^{7}$	120.7 (4)
Data collection		NI	1204(4)	NI	122 3 (4)
Siemens R3m diffractometer	$\theta_{\rm max} = 24.05^{\circ}$	$C_{3} - C_{4} - C_{1}$	117.4 (4)	C5-C4-Cl	121.0 (4)
$\theta/2\theta$ scans	$h = -3 \rightarrow 9$	C6-C5-S	118.2 (4)	C4—C5—S	123.8 (3)
Absorption correction	$k = -11 \rightarrow 11$	O1C7O2	121.7 (4)	O1C7C1	125.5 (4)
nena	$l = -13 \rightarrow 13$	O2C1C1	112.8 (4)	C7—O2—C8	117.6 (4)
	$i = -13 \rightarrow 13$	O2C8O3	105.3 (4)	C9—O3—C8	116.0 (4)
4213 measured reflections	2 standard reflections	O4—C9—O3	122.5 (6)	O4—C9—C10	125.7 (5)
2722 independent reflections	monitored every 98	O3C9-C10	111.8 (5)	C2-N1-C11	125.1 (4)
1461 observed reflections	reflections	NI-CII-CI2	110.3 (4)	C13—C12—O5	109.6 (5)
$[I > 2\sigma(I)]$	intensity decay: none	CI3CI2CI1	135.0 (6)	O5-C12-C11	115.3 (5)
P = 0.0243		C12-C13-C14	106.9 (6)	C15-C14-C13	106.9 (6)
$R_{int} = 0.0245$		C14—C15—O5	111.0 (6)	C15-O5-C12	105.6 (5)
D.C.		06—S—07	118.8 (2)	06—S—N2	106.8 (3)
Refinement		07—S—N2	107.2(2)		
Refinement on F^2	$(\Lambda/\sigma)_{\rm max} < 0.001$	C7-C1-C2-N1	0.5(7)	ClC4C5S	-0.3 (7)
$P[E^2 > 2 - (E^2)] = 0.0511$	$\Delta_{2} = 0.208 \text{ g} ^{3}$	C2-C3-C4-Cl	179.5 (4)	C7-C1-C6-C5	178.7 (5)
$R[F > 2\sigma(F)] = 0.0511$	$\Delta \rho_{\rm max} = 0.298 \ {\rm e} \ {\rm A}$	S-C5-C6-C1	-180.0 (4)	C6-C1-C7-O2	5.7 (6)
$wR(F^2) = 0.1179$	$\Delta \rho_{\rm min} = -0.449 \ {\rm e} \ {\rm A}^{-1}$	C2C1C7O1	4.0 (8)	C7O2C8O3	84.5 (5)
S = 1.088	Extinction correction: none	O1-C7-O2-C8	8.0(7)	C8—O3-—C9—O4	4.5 (8)
2722 reflections	Atomic scattering factors	02	174.1 (4)	C3-C2-N1-C11	- 7.9 (8)
260 parameters	from International Tables	C2-N1-C11-C12	171.4 (5)	N1-C11-C12-C13	73.9 (8)
209 parameters	for Crustelloonanby (1002	C12-C13-C14-C15	0.3(7)	O5-C12-C13-C14	-1.1 (6)
H atoms refined isotropically	for Crystattography (1992,	C13-C12-O5-C15	1.4 (6)	C14—C15—O5—C12	-1.2(7)
$w = 1/[\sigma^2(F_o^2) + (0.0687P)^2]$	Vol. C, Tables 4.2.6.8 and	C6C5SO7	123.7 (4)	C6C5SO6	-5.3 (5)
where $P = (F_o^2 + 2F_c^2)/3$	6.1.1.4)	N1C2C3C4	-178.6(5)	C6-C5-S-N2	- 119.4 (4

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$)

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i . \mathbf{a}_j.$

	х	у	z	U_{eq}
C1	().5006 (6)	0.4033 (5)	-0.1054 (4)	0.0335 (12)
C2	0.6547 (6)	0.2968 (5)	-0.0865 (4)	0.0380 (12)
C3	0.6462 (7)	0.1662 (6)	0.0104 (4)	0.0419(14)
C4	0.4962 (6)	0.1429 (5)	0.0816 (4)	0.0398 (13)
C5	0.3443 (6)	0.2507 (5)	0.0662 (4)	0.0371 (12)
C6	0.3500 (6)	0.3784 (5)	-0.0275 (4)	0.0376 (13)
C7	0.4984 (6)	().5405 (5)	-0.2055 (4)	0.0344 (12)
01	0.6199 (4)	0.5714 (4)	-0.2821 (3)	0.0530 (10)
O2	().3457 (4)	0.6354 (3)	-0.2026 (3)	0.0434 (9)
C8	0.3254 (7)	0.7637 (5)	-0.3003 (4)	0.0459 (15)
03	().2909 (5)	0.7158 (4)	-0.3927 (3)	0.0496 (10)
C9	0.2515 (7)	0.8236 (6)	-0.4914 (5)	0.0500(15)
O4	0.2549 (6)	0.9510(4)	-0.5056 (3)	0.0751 (14)
C10	0.2022 (11)	0.7653 (9)	-0.5758 (7)	0.081 (2)
NI	0.8048 (5)	0.3166 (5)	-0.1581 (4)	0.0467 (12)
C11	0.9666 (6)	().2225 (6)	-0.1361 (5)	0.0509 (15)
C12	1.1006 (6)	0.2629 (6)	-0.2421 (5)	0.0431 (13)
C13	1.1766 (8)	0.3764 (7)	-0.2864 (6)	0.058 (2)
C14	1.2891 (8)	0.3522 (7)	-0.3950 (6)	0.061 (2)
C15	1.2745 (8)	0.2281 (8)	-0.4101 (5)	0.061 (2)
O5	1.1573 (5)	0.1685 (4)	-0.3185 (4)	0.0574 (10)
S	0.1468 (2)	0.2306 (2)	0.15933 (12)	0.()447 (4)
O6	0.0319 (4)	0.3679 (4)	0.1196 (3)	0.0604 (11)
07	0.1150 (5)	().()940 (4)	0.1583 (3)	0.0594 (11)
N2	0.1540 (6)	0.2188 (5)	0.2983 (4)	0.0509(12)
Cl	0.5000(2)	-0.02080(15)	0.19650(13)	0.0593 (5)

Table 2. Selected geometric parameters (Å, °)

C1C6	1.400 (6)	C1C2	1.427 (6)
C1C7	1.475 (6)	C2—N1	1.359 (6)
C2-C3	1.420 (6)	C3C4	1.366 (7)
C4—C5	1.412 (6)	C4C1	1.732 (5)
C5C6	1.380 (6)	C5—S	1.772 (5)
C7—O1	1.220 (5)	C7—O2	1.347 (5)
O2—C8	1.409 (5)	C8-03	1.429 (6)
O3C9	1.340 (6)	C9—O4	1.197 (6)
C9—C10	1.479 (9)	N1-C11	1.445 (6)
C11-C12	1.487 (7)	C12-C13	1.333 (7)
C12O5	1.373 (6)	C13C14	1.416(8)
C14-C15	1.309 (9)	C15-O5	1.367 (6)
S06	1.422 (3)	S—07	1.427 (4)
S—N2	1.620(5)		

Table 3. Torsion angles in furosemide and Prol (°)

Torsion Angles	Furosemide*				
e	Prol	Molecule A	Molecule B		
C3-C2-N1-C11	-7.9(8)	-15.2	5.3		
C1-C2-N1-C11	172.7 (5)	165.5	-175.1		
C2-N1-C11-C12	171.4 (5)	-62.9	83.5		
N1-C11-C12-C13	73.9 (8)	127.6	116.7		
N1-C11-C12-O5	-101.9 (5)	-54.0	-67.1		

* Standard deviations for torsion angles of furosemide were not available.

Table 4. Hydrogen-bonding geometry (Å, °)

D — $H \cdot \cdot \cdot A$	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdot \cdot \cdot A$	$D = H \cdot \cdot \cdot A$
NI-HI···OI	0.97 (5)	2.713(5)	1.95 (5)	135 (4)
N2—H2· · · O1'	1.03(5)	3.116(6)	2.31 (5)	135 (4)
N2—H3· · · O4"	1.00(5)	2.996 (6)	2.10(5)	144 (4)
Symmetry codes: (i	(1 - x, 1 - y)	, -z; (ii) x, y	-1, 1+z.	

The structure was solved by the Patterson method which located S and Cl atoms. The rest of the non-H atoms were located by difference Fourier maps and refined anisotropically. All H atoms were located by difference Fourier maps and refined isotropically with an isotropic displacement parameter (U_{iso}) equal to $1.2U_{eq}$ of the parent atom. Both H atoms at C8 were refined with fixed orientations and both H atoms at C11 were refined as riding atoms in order to improve distances.

Data collection: P3/P4/PC (Siemens, 1991). Cell refinement: P3/P4/PC. Data reduction: XDISK in SHELXTL/PC (Sheldrick, 1990a). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990b). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai & Pritzkow, 1995). Software used to prepare material for publication: CIFTAB in SHELXL93.

The authors wish to thank the Laboratorio de Cristalografía del Departamento de Física de la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile, Chile, for the diffractometer measurement time, CSIC (Comisión Sectorial de Investigación Científica, Universidad de la República, Uruguay) and CONICYT (Consejo Nacional de Investigación Científica y Tecnológica, Uruguay) for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: SX1003). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Lamotte, J., Campsteyn, H., Dupont, L. & Vermeire, M. (1978). Acta Cryst. B34, 1657–1661.
- Prandi, C., Fagiolino, P., Manta, E. & Llera, L. (1992). *Il Farmaco*, **47**, 1225–1230.
- Prandi, C., Fagiolino, P., Manta, E., Llera, L., Aiache, J. & Couquelet, J. (1992). *Il Farmaco*, **47**, 249–263.
- Sheldrick, G. M. (1990a). SHELXTLIPC Users Manual. Siemens Analytical Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1990b). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1991). P3/P4/PC Diffractometer Program. Version 4.27. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA
- Zsolnai, L. & Pritzkow, H. (1995). ZORTEP. An Interactive ORTEP Program. University of Heidelberg, Germany.

Acta Cryst. (1996). C52, 2878–2880

2-(*p*-Diethylaminobenzylidene)-1,3indandione

VLADIMIR KHODORKOVSKY, ROYI A. MAZOR AND ARKADY ELLERN

Ben-Gurion University of the Negev, Chemistry Department, PO Box 653 Beer-Sheva, Israel. E-mail: ellern@bgumail. bgu.ac.il

(Received 5 February 1996; accepted 5 June 1996)

Abstract

The title compound, $C_{20}H_{19}NO_2$, belongs to the class of donor-acceptor-substituted conjugated polyenes. Within the structure, O atoms are situated in the plane of the 1,3-indandione fragment and the N atom lies in the plane of the *p*-benzylidene fragment which forms a dihedral angle of 7.6 (2)° with the indandione nucleus.

Comment

2-(*p*-Dimethylaminobenzylidene)-1,3-indandione, (*Ib*), exhibits a series of unusual solid-state and solution pho-

tophysical properties, in particular non-linear optical behaviour and recently discovered non-linear fluorescent properties (Valkunas *et al.*, 1993, and references therein). When this derivative absorbs at 450–500 nm in solution, it forms three deeply coloured polymorphs: the most-stable dark-red α -modification (space group $P2_1/c$, Z = 8; Magomedova & Zvonkova, 1978), a less-stable blue-coloured β -modification (space group $P2_1/c$, Z = 4; Magomedova, Zvonkova, Neigaus & Novakovskaya, 1980), and the least-stable red prisms of the γ -modification (non-centrosymmetric space group $Pna2_1$, Z = 4; Magomedova & Zvonkova, 1980).

During our investigations on the synthesis and properties of structural analogues of (Ib), we have found that the p-diethylamino derivative, the title compound (Ia), always crystallizes as deep-green lustrous crystals, whereas its UV-visible absorption properties in solution ($\lambda_{max} = 488$ nm in dichloromethane) are practically the same as those of (Ib). Solid-state investigations of this derivative may shed light on unusual polychromic properties of the whole series of electron-donor-substituted derivatives of 2-ylidene-1,3-indandiones.

The 1,3-indandione moiety of (Ia) is planar [r.m.s. $\Delta = 0.012(4)$ Å] and the two O atoms are displaced by 0.028(5)(O1) and 0.059(5)Å (O2) from the plane. The N atom is displaced from the plane of the p-phenyl ring [r.m.s. $\Delta = 0.003(3)$ Å] by 0.12 (8) Å. The bond lengths within the bridge linking the 1,3-indandione accepting and diethylamino donating moieties exhibit the presence of considerable conjugation. Thus, the aromatic C12-C13 [1.376(6)Å] and C15-C16 [1.373 (6) Å] bonds are slightly shorter than other aromatic bonds in the *p*-phenylene ring [1.396(6)-1.400(6)Å], indicating the *p*-quinoid character. All of the above-mentioned geometrical features are also typical of (Ib), (II) [2-(4'-dimethylaminophenylimino)-1,3-indandione; Magomedova, Zvonkova, Geita, Novakovskaya, Neigaus & Belsky, 1980] and (III) [2-(4'-dimethylaminocinnamoyl)-1,3-indandione; Magomedova, Zvonkova, Geita, Smelyanskaya & Ginzburg, 1980].